7. Guiraud. J. -P., Acoustique geomèrique, bruit balistique des avions supersoniques et focalisation. J. mécanique, Vol.4, No.2, 1965.
8. Courant, R., Partial differential equations. New York - London. 1962.
9. Grib, A.A., Ryzhov, O.S. and Khristianovich, S.A., Theory of short waves. PMTF, No.1, 1960.
10. Zhilin, Iu.L., Theory of decay of the steady and nonsteady shock waves in inhomogeneous media. Proc. of TsAGI, No. 1094, 1967.
11. Ryzhov, O.S. and Shefter, G.M.. On the energy of acoustic waves propagating in a moving media. PMM Vol. 26, No. 5, 1962.
12. Keller, J. B., Geometrical acoustics. I. The theory of weak shock waves. J. Appl. Phys. Vol. 25, No.8, 1954.

Translated by L. K.

THREE-DIMENSIONAL RUNNING WAVES

IN A BAROTROPIC GAS

PMM Vol. 33, No. 1, 1969, pp. 169-174
A.F. SIDOROV and O.B. KHAIRULLINA
(Sverdlovsk)
(Received March 22, 1968)
The equations of potential triple waves in a barotropic gas with an arbitrary equation of state are obtained. The properties of the solutions for contiguous flows of the doubleand triple-wave type are investigated. The solutions of certain three-dimensional selfsimilar problems of three pistons are solved in the case of a "heavy" gas with a high initial velocity of sound. These problems concern three planes forming an infinite trihedral angle within which the gas is at rest at the instant $t=0$, whereupon the planes begin to retract from the gas at high constant velocities.

1. A system of equations of triple waves for a polytropic gas in the hodograph space of the velocities u_{1}, u_{3}, u_{3} was derived in [1]. Double waves in a barotropic gas for nonsteady potential two-dimensional flows were considered in [${ }^{2}$] (see also Suchkov, Applying the method of differential constraints to gas dynamics problems. Candidate 's thesis, Siberian Branch of the Academy of Sciences USSR, Novosibirsk). Some of the results of [${ }^{2}$] constitute minor generalizations of the results obtained in [${ }^{0,4}$] for a polytropic gas.
The equations of potential unsteady third-rank waves [1] for a gas with the equation of state $p=f(p)(p$ is the pressure, ρ is the density) can be derived exactly as for a polytropic gas. Proceeding as in [1], we introduce as our unknown functions the enthalpy

$$
H\left(u_{1}, u_{2}, u_{2}\right)=\int \frac{d p}{\rho}
$$

and the "deployment" function

$$
\begin{equation*}
\Pi\left(u_{1}, u_{8}, u_{8}\right)=\sum_{k=1}^{s} x_{k} u_{k}-\varphi-t H-\frac{t+1}{2}\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right) \tag{1.1}
\end{equation*}
$$

Here x_{k} are Cartesian coordinates and φ is the velocity potential. We obtain the following system of equations for these functions \boldsymbol{H} and Π :

$$
\begin{gather*}
\sum_{i,}^{s} A_{i k} L_{i k}=0, \quad j=1,2,3 \tag{1.2}\\
A_{i k}=\delta_{i k}-\frac{H_{i} H_{k}}{f^{\prime}}, \quad H_{k}=\frac{\partial H}{\partial u_{k}}, \quad H_{m p}=\frac{\partial^{2} H}{\partial u_{m} \partial u_{p}} \\
L_{i k^{1}}=(-1)^{i+k}\left|\begin{array}{ll}
\Pi_{m p}+\delta_{m p} & \Pi_{n p}+\delta_{n p} \\
\Pi_{m q}+\delta_{m q} & \Pi_{n q}+\delta_{n q}
\end{array}\right|, \quad \Pi_{m p}=\frac{\partial^{2!\Pi}}{\partial u_{m} \partial u_{p}} \\
L_{i k^{2}}=(-1)^{i+k}\left\{\left|\begin{array}{lll}
\Pi_{m p}+\delta_{m p} & \Pi_{n p}+\delta_{n p} \\
H_{m q}+\delta_{m q} & H_{n q}+\delta_{n q}
\end{array}\right|+\left|\begin{array}{ll}
H_{m p}+\delta_{m p} & H_{n p}+\delta_{2 ; p} \\
\Pi_{m q}+\delta_{m q} & \Pi_{n q}+\delta_{n q}
\end{array}\right|\right\} \\
L_{i k}=(-1)^{i+k}\left|\begin{array}{ll}
H_{m p}+\delta_{m p} & H_{n p}+\delta_{n p} \\
H_{m q}+\delta_{m q} & H_{n q}+\delta_{n q}
\end{array}\right| \begin{array}{l}
(m, n \neq k ; m<n) \\
(p, q \neq i ; p<q)
\end{array}
\end{gather*}
$$

Here $\delta_{m p}$ is the Kronecker delta.
Once the functions H and Π have been found, the flow in the physical space x_{1}, x_{2}, x_{2}, t can be determined from the formulas

$$
\begin{equation*}
x_{i}=u_{i}+\Pi_{i}+t\left(u_{i}+H_{i}\right), \quad t=1,2,3 \tag{1.3}
\end{equation*}
$$

Equations (1.2), (1.3) were obtained under the assumption that u_{1}, u_{3}, u_{3} are functionally independent.
System (1.2) constitutes an overdetermined system of three equations for two unknown functions; the equation for H is independent. The second partial derivatives of the functions H and Π occur quadratically in all of the equations. After finding H we must choose a Π which satisfies Eqs. (1.2) for $i=1,2$. For $\Pi=-1 / 2\left(u_{1}^{2}+u_{9}^{2}+\right.$ $+u_{g}{ }^{2}$) these equations are fulfilled automatically, and the equation for H describes self-similar flows which depend on the variables $x_{i} / t, t=1,2,3$. Sample nonselfsimilar flows of the triple-wave type are constructed in [${ }^{5}$].

If u_{1}, u_{2}, u_{3} are functionally dependent and if the flow corresponds to the surface $u_{3}=\psi\left(u_{1}, u_{2}\right)$ in the hodograph space, then (as in [1]) it is easy to obtain an already closed system of three equations for the functions Ψ, H and Π (second-rank waves) in the plane u_{1}, u_{2} in the form

$$
\begin{gather*}
L_{1}(\Psi)=R_{11} \Psi_{23}-2 R_{12} \Psi_{12}+R_{22} \Psi_{11}=0 \tag{1.4}\\
L_{2}(H)=R_{11}\left(H_{22}+1+\Psi_{2}^{2}\right)-2 R_{12}\left(H_{12}+\Psi_{1} \Psi_{2}\right)+R_{22}\left(H_{11}+1+\Psi_{1}^{2}\right)=0 \\
L_{3}(\mathrm{I})=R_{11}\left(\Pi_{22}+1+\Psi_{2}^{2}\right)-2 R_{12}\left(\Pi_{12}+\Psi_{1} \Psi_{2}\right)+R_{22}\left(\Pi_{11}+1+\Psi_{3}^{2}\right)=0
\end{gather*}
$$

where

$$
R_{i k}=\delta_{i k}+\Psi_{1} \Psi_{k}-\frac{1}{f^{\prime}} H_{i} H_{k}, \quad \Psi_{i k}=\frac{\partial^{2} \Psi}{\partial u_{i} \partial u_{k}}, \quad \Psi_{i}=\frac{\partial \Psi}{\partial u_{i}}
$$

The flow in physical space can be reconstructed from the formulas

$$
\begin{equation*}
\Pi_{i}+u_{i}+\Psi \Psi_{i}+\left(H_{i}+u_{i}+\Psi \Psi_{i}\right) t=x_{i}+x_{3} \Psi_{i}, \quad i=1,2 \tag{1.5}
\end{equation*}
$$

This system of equations for a polytropic gas was first obtained in ["].
Let us consider the properties of flows with contiguous second- and third-rank waves. These will be found useful in the solution of specific problems. The case of contiguous
first-rank (simple) and second-rank waves was investigated in [${ }^{7}$].
Property 1. If the surface $u_{3}=\Psi\left(u_{1}, u_{2}\right)$ corresponds in physical space to the surface $F\left(x_{1}, x_{2}, x_{3}, t\right)=0$ along which some triple wave is contiguous to a threedimensional double wave, then $u_{3}=\Psi\left(u_{1}, u_{2}\right)$ is the characteristic surface for system (1.2).

Let the initial conditions

$$
\begin{equation*}
H=H\left(u_{1}, u_{2}\right), \quad H_{\psi}=H_{\psi}^{*}\left(u_{1}, u_{2}\right), \quad \Pi=\Pi\left(u_{1}, u_{2}\right), \quad \Pi_{\psi}=\Pi_{\psi}\left(u_{1}, u_{3}\right) \tag{1.6}
\end{equation*}
$$

be given at the surface $u_{\mathrm{s}}=\Psi$.
Here H_{ψ} and Π_{\downarrow} are the generating derivatives.
Replacing u_{s} in Eqs. (1.2) by the new independent variable $\lambda=u_{3}-\Psi\left(u_{1} ; u_{3}\right)$, we can rewrite system (1.2) as

$$
\begin{gather*}
A H_{\lambda, \lambda}+C_{1}=0, \quad A H_{\lambda \lambda}+B \Pi_{\lambda \lambda}+C_{\mathbf{2}}=0 \quad B \Pi_{\lambda \lambda}+C_{\mathbf{3}}=0 \\
\Pi_{\lambda \lambda}=\frac{\partial^{2} \Pi}{\partial \lambda^{2}}, \quad H_{\lambda \lambda}=\frac{\partial^{2} H}{\partial \lambda^{2}} \tag{1.7}\\
A=L_{\mathbf{3}}(H)-\left(H_{\psi}-\Psi\right) L_{1}(\Psi), \quad B=L_{\mathbf{3}}(\Pi)-\left(H_{\psi}-\Psi\right) L_{1}(\Psi) \tag{1.8}
\end{gather*}
$$

Here the coefficients of $H_{\lambda \lambda}$ and $\Pi_{\lambda \lambda}$ vanish, and the coefficients C do not depend on $H_{\lambda \lambda}, \mathrm{n}_{\lambda \lambda}$. The surface $u_{3}=\Psi$ is characteristic only if $A=B=0$. The latter equations follow in this case from (1.4) by virtue of (1.8). Property 1 has been proved.

Remark. In the case where a self-similar triple wave is contiguous to a two-dimensional double wave with $\Psi=$ const the equation of the characteristic surface for the triple wave equation simply coincides with the double-wave equation.

Now let us consider the problem of determining the shape of the contiguity surface in physical space in the case of self-similar flows.

Let the function $H\left(u_{1}, u_{2}\right)$ for a double self-similar wave $\quad\left(\Pi=-1 / 9\left(u_{1}{ }^{2}+u_{8}{ }^{8}\right)\right.$ be known and let $\Psi \equiv 0$.

Property 2. The shape of the contiguity surface $F\left(\xi_{1}, \xi_{1}, \xi_{3}\right)=0, \xi_{i}=x_{l} / \boldsymbol{t}$ of the double- and triple-wave domains can be determined without solving triple-wave equation (1.2) for $j=3$, as the required result can be obtained by solving a certain first-order partial differential equation.

In fact, the contiguity surface in the space $\xi_{1}, \xi_{1}, \xi_{3}$ can be found in this case by eliminating u_{1}, u_{2} from the relations

$$
\begin{equation*}
\xi_{i}=u_{i}+H_{i}\left(u_{1}, u_{2}\right), i=1,2 ; \xi_{3}=H_{3}\left(u_{1}, u_{2}\right) \tag{1.9}
\end{equation*}
$$

Let $H\left(u_{1}, u_{2}\right)$ on the plane $u_{3}=0$ correspond to the double wave, so that H_{1}, H_{2}, H_{11}, H_{18}, H_{22} as functions of u_{1}, u_{2} are known. The contiguity surface will be determined once we know $H_{3}\left(u_{1}, u_{2}\right)=\Phi\left(u_{1}, u_{3}\right)$. To find the function Φ from system (1.2) for $i=$ a we set $H_{31}=\Phi_{1}, H_{35}-\Phi_{2}\left(O \Phi / \partial u_{1}-\Phi_{1}\right)$ and recall the fact that the coefficient H_{33} vanishes. This gives us the first-order partial differential equation

$$
\begin{align*}
& \left(1-\frac{H_{1}^{2}}{l^{\prime}}\right) \Phi_{2}^{2}+\left(1-\frac{H_{2}^{2}}{l^{\prime}}\right) \Phi_{1}{ }^{2}+\left(\frac{\Phi^{2}}{l^{\prime}}-1\right)\left(H_{11} H_{23}+H_{11}+H_{23}-H_{14}{ }^{2}+1\right)+ \tag{1.10}\\
& +\frac{H_{2} H_{2}}{} \Phi_{1} \Phi_{2}+\frac{2}{f^{\prime}}\left(H_{1} H_{12}-H_{3} H_{11}-H_{2}\right) \Phi_{1} \Phi_{1}+\frac{2}{f^{\prime}}\left\langle H_{2} H_{12}+H_{1} H_{22}-H_{1}\right) \Phi \Phi_{1}=0
\end{align*}
$$

In specific problems the function Φ is usually known on some line $\varphi\left(u_{1}, u_{3}\right)=0$, or from the conditions of contiguity with double waves, or from the conditions at movable walls [b]. Thus, by solving (1,10) with the given initial conditions by ordinary methods (e.g. by reducing the problem to a system of ordinary differential equations for the characteristics) to find $\Phi\left(u_{1}, u_{2}\right)$, it is possible to find the shape of the contiguity surface directly.

Let us consider the special case of contiguity with a double wave of special form in a polyropic gas,

$$
\begin{equation*}
c=\alpha_{0}+\alpha_{1} u_{1}+\alpha_{2} u_{2} \tag{1.11}
\end{equation*}
$$

(c. is the velocity of sound; $a_{0}=$ const, $a_{1}=0.5(\gamma-1), a_{2}=0.5(\gamma-1)(1+\gamma)^{1 / 2}(3-$ $-\gamma)^{-1 / 3} ; \boldsymbol{\gamma}$ is the adiabatic exponent). Such double waves were investigated in $[\mathbf{0 , 0}]$. They are important in the solution of several problems concerning the retraction of plane pistons from a gas. Equation (1.10) can be simplified in this case. Replacing H by the function $c\left(u_{1}, u_{2}, u_{3}\right)\left(c^{2}=d p / d \rho\right)$, setting $\partial c / \partial u_{3}=\Gamma\left(u_{1} u_{3}\right)$ for $u_{j}=0$, and substituting variables according to the expressions

$$
\xi=\alpha_{0}+\alpha_{1} u_{1}+\alpha_{2} u_{2}, \quad \eta=-\alpha_{3} u_{1}+\alpha_{1} u_{2}
$$

we obtain the following equation for Γ :

$$
\begin{equation*}
4 \frac{\gamma-2}{(\gamma-1)^{2}} \Gamma^{2}+8 \frac{\xi}{\gamma-1} \Gamma \Gamma_{\xi}-4 \frac{\xi^{2}}{3-\gamma} \Gamma_{\xi}^{2}+4 \frac{\xi^{2}(\gamma+1)}{(3-\gamma)^{2}} \Gamma_{\eta}^{2}+\frac{\gamma+1}{3-\gamma}=0 \tag{1.12}
\end{equation*}
$$

In the particular problem of escape into a vacuum along a dihedral angle (see $\left.\right|^{\mathrm{b}} \mathrm{J}^{\prime}$) we have the condition

$$
\Gamma=\alpha_{3}=\frac{\gamma-1}{2}\left(\frac{\gamma+1}{(3-\gamma)(2-\gamma)}\right)^{1 / 2}=\text { const } \quad \text { for } u_{2}=0
$$

Equation (1.12) is fulfilled ($\Gamma_{E}=\Gamma_{n}=0$) for $\Gamma \equiv \alpha_{3}=$ const. Replacing H by the function $c\left(u_{1}, u_{2}, u_{2}\right)$ in (1.9), we obtain the following equation for the contiguity surface (in this case a plane):

$$
\begin{equation*}
\alpha_{3}+\alpha_{1} \alpha_{3} \xi_{1}+\alpha_{1} \alpha_{3} \xi_{2}-\left(\alpha_{1}+\alpha_{1}^{2}+\alpha_{3}^{2}\right) \xi_{3}=0 \tag{1.13}
\end{equation*}
$$

2. It would be of interest to obtain the exact particular solutions of (1.2) appearing in [${ }^{5}$], or to construct approximate solutions of certain problems. We shall construct approximate solutions of the equation for \dot{H} (the self-similar case) and pictures of motion in physical space for the case of interaction of three-dimensional rarefaction waves in a "heavy" gas.

Let a homogenous gas with a high velocity of sound $c(c \geqslant 1 ; \mathrm{m} / \mathrm{sec}$ can be taken as the units of measurement) be at rest inside an infinite tihedral angle bounded by the planes P_{1}, P_{9}, P_{3}; let the dihedral angles between these planes be $\alpha_{12} \leqslant 1 / 2 \pi, \alpha_{13} \leqslant$ $1 / 2 \pi, a_{23} \leqslant 1 / 2 \pi$. At the instant $t=0$ the planes P_{i} (pistons) begin to retract from the gas with low (as compared with the velocity of sound in the unperturbed gas) constant velocities V_{i}. The resulting self-similar flow depends on the variables $\xi_{i}=x_{i} / t$, $i=1,2,3$.
We note that the acoustic approximation is generally inadequate for this problem, since the gradients of the required quantities are large.

Let us consider the class of flows in which strong discontinuities do not arise. Such flows are potential and consist of domains of constant motion of simple, double, and
triple waves (the triple wave is described by Eq. (1.2) for $i=3$). In $\left[{ }^{1,0}\right]$ we considered two-dimensional problems on the retraction from a polytropic "heavy" gas of two pistons $\boldsymbol{P}_{1}, \boldsymbol{P}_{\mathbf{3}}$ with the angle α between them at the low velocities $\boldsymbol{V}_{1}, \boldsymbol{V}_{\mathbf{2}}$. We showed that the complete potential flow can be constructed only for $\alpha=\pi / k$ (k - is an integer).
Let us replace \dot{H} by $M=\int c p^{-1} d \rho(M=(2 / \gamma-1) c$ in a polytropic gas) as our unknown function.

The equation for M which follows from (1.2) for $j=3$ can be reduced to the form

$$
\sum_{i, k=1}^{s}\left(\delta_{i k}-M_{i} M_{k}\right)\left|\begin{array}{cc}
M_{m p}+a M_{m} M_{p}+b \delta_{m p} & M_{n p}+a M_{n} M_{p}+b \delta_{n p} \tag{2.1}\\
M_{m q}+a M_{m} M_{q}+b \delta_{m q} & M_{n q}+a M_{n} M_{q}+b \delta_{n q}
\end{array}\right|=0
$$

where

$$
\begin{aligned}
& m, n \neq k ; \quad m<n ; \quad \quad p_{1} q \neq t, \quad p<q \\
& a=\frac{1}{2} \frac{f^{\prime \prime} p}{f^{2 / 2}}, \quad b=\frac{1}{f^{1 / s}}, \quad M_{n p}=\frac{\partial^{2} M}{\partial u_{n} \partial u_{p}}
\end{aligned}
$$

Relations (1.3) become

$$
\begin{equation*}
\xi_{i}=u_{i}+V T_{i} \tag{2.2}
\end{equation*}
$$

Weak discontinuities begin to move with the velocity $e=\sqrt{f^{\prime}}$ into the unperturbed gas from the planes P_{i}. Since the dimensions of the flow region in the space $\xi_{1}, \xi_{7}, \xi_{8}$ are of the order O (c), it follows from formulas (2.2) that the quantities M_{i} are bounded and that $M_{1}=O$ (1). Let us assume, moreover, that the inequality $a \leqslant 1$ is fulfilled throughout the flow region. This condition is fulfilled when $c \geqslant 1$ for ordinary equations of state, including that of a polytropic gas.

The above assumptions enable us to neglect terms containing a and b ($b<1$) as factors in (2.1). The resulting approximate equation for M admits of a solution of the form

$$
\begin{equation*}
M=d_{0}+d_{1} u_{i}+d_{2} u_{2}+d_{3} u_{3} \tag{2.3}
\end{equation*}
$$

where d_{i} are arbitrary constants. Let us use these solutions to construct flows in the three-piston problem. We shall also make use of linear relations between M and the components u_{4} in the simple- and double-wave regions. Such relations are exact for simple waves (they are obtainable from the exact equations of hydrodynamics); in the case of double waves they are obtained in the same way as for a triple wave. It is easy to see that the conclusions of [1] (the case of a heavy gas) are also valid for an arbitrary equation of state; the solutions obtained in [1] in the hodograph plane for the function $(2 / \gamma-1) c$ are of the same form for the new unknown function M. Hence, in order to construct the complete flow without strong discontinuities we must assume that the dihedral angles $\alpha_{19}, \alpha_{13}, \alpha_{23}$ are of the form

$$
\begin{equation*}
\alpha_{12}=\pi / k_{1}, \quad \alpha_{1 s}=\pi / k_{3}, \quad \alpha_{2 s}=\pi / k_{z} \tag{2.4}
\end{equation*}
$$

where $k_{i} \geqslant 2$ are integers. This follows from the fact that planar flows far away from the vertex of the trihedral angle formed by the moving pistons are adjacent to the rihs.

But for an arbitary trihedral angle which does not degenerate into a ray we have

$$
\begin{equation*}
\alpha_{13}+\alpha_{13}+\alpha_{23}>\pi \tag{2.5}
\end{equation*}
$$

This inequality and (2.4) imply that we need only consider the following possible combinations of the angles $\alpha_{13}, \alpha_{13}, \alpha_{23}$:

$$
\begin{gathered}
\left(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{k}\right)\left(k \geqslant 2-\text { is an integer }\left(\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{3}\right),\left(\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{4}\right),\right. \\
\left(\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{5}\right)
\end{gathered}
$$

Leaving aside the three exceptional cases, let us consider the principal possiblity $(1 / 2 \pi, 1 / 2 \pi, \pi / k)$.
The equations of the angle faces at the initial instant can be specified in the form

$$
\begin{equation*}
x_{1}=0, \quad x_{3}=0, \quad x_{1}=x_{2} \operatorname{ctg}(\pi / k) \tag{2.6}
\end{equation*}
$$

In the hodograph space the flow domains correspond to the prism bounded by the planes

$$
\begin{align*}
& u_{3}=0, \quad u_{2}=0, \quad u_{1}=-V, \quad u_{1}=-u_{1} \operatorname{ctg}(\pi / k) \tag{2.7}\\
& u_{3}=-V, \quad-u_{1} \cos (\pi / k)+u_{2} \sin (\pi / k)+V=0
\end{align*}
$$

The top base of the prism (the plane $u_{3}=0$) is divided by straight lines into areas corresponding to the various planar double and simple waves as in [']. The tiple-wave

Fig. 1 regions can be obtained by dividing the prism into segments by planes paraliel to the axis u_{g} and passing through the above straight lines in the plane $u_{2}=0$.

Fig. 2

The flow is defined in physical space by formulas (2.2). For example, let us consider the motion of a polytropic gas for the trihedral angle $(1 / 2 \pi, 1 / 2 \pi, 1 / 3 \pi)(k=3)$. Figure 1 shows (not in scale) the flow region in the hodograph space when the pistons P_{i} retract with equal velocities V. The plane $A O O_{1} A_{1}$ is a plane of symmetry in this case; it can be regarded as a stationary wall.

Figure 2 shows (not in scale) the part of the flow region in physical space which is bounded by the pistons $\boldsymbol{P}_{\mathbf{1}}, \boldsymbol{P}_{\mathbf{2}}$ and the stationary wall (the bisector plane). The regions denoted by the letters $T_{i}(i=1,2)$ correspond to the riple-wave regions; $D_{j}(i=1$, $2,3,4)$ to the double-wave regions; $\Pi_{k}(k=1.2,3,4)$ to the simple-wave regions; $C_{l}(l=1,2)$ to the constant flow regions.

Table 1.

Space	Space	
$\xi_{1}, \xi_{1} \xi_{0}$	u_{1}, u_{1}, u_{4}	Solution in the hodograph space

Prisms

T_{1}	$B C D O O_{1} D_{1} C_{1} B_{1}$	$M=u_{1}+\sqrt{3} u_{1}+u_{3}+M_{0}$
T_{1}	$A B C C_{1} B_{1} A_{1}$	$M=1 / 3 \sqrt{3} u_{2}+u_{2}+M_{0}-V$

Planes

D_{1}	$B C C_{1} B_{1}$	$M=u_{3}+2 / 3 \sqrt{3} u_{2}+M_{0}-V, \quad u_{3}=-\sqrt{3}\left(u_{1}+V\right)$
D_{2}	$B_{1} C_{1} D_{1} O_{1}$	$M=u_{1}+V \overline{3} u_{2}+M_{0}-V, u_{2}=-V$
D_{2}	$A C C_{1} A_{1}$	$M=1 / \sqrt{3} u_{2}+u_{3}+M_{0}-V, u_{2}=\sqrt{3} u_{1}$
D_{4}	$A_{1} B_{1} C_{1}$	$M=1 / 3 \sqrt{3} u_{9}+M_{0}-2 V, \quad u_{3}=-V$

Straight lines

Π_{1}	$C C_{1}$	$\begin{array}{l}u_{1}=-1 / 2 V, u_{2}=-1 / 2 \sqrt{3} V, \quad u_{2}=M-M_{0}+2 V \\ \Pi_{2} \\ \Pi_{2}\end{array}$
$A A_{1}$	$u_{1}=-V, u_{2}=-\sqrt{3} V, u_{2}=M-M_{0}+3 V$	
Π_{1}	$B_{1} C_{1}$	$\begin{array}{l}u_{1}=1 / 2\left(M-M_{0}+2 V\right), u_{2}=1 / 2 \sqrt{3}(M-M 0+2 V) \\ u_{3}=-V \\ u_{1}=-1 / 2\left(M-M_{0}+4 V\right), \quad u_{2}=1 / 2 \sqrt{3}\left(M-M_{0}+2 V\right) \\ u_{3}=-V\end{array}$

Points

C_{1}	A_{1}	$\begin{array}{l}u_{1}=-V, \quad u_{1}=-\sqrt{3} V, \quad u_{2}=-V, \quad M=M_{0}-4 V \\ C_{2}\end{array}$
C_{1}	$u_{1}=-1 / 2 V, \quad u_{2}=-1 / 2 \sqrt{3} V, \quad u_{1}=-V, \quad M=M_{0}-3 V$	

The above letters are placed at one of the faces of the corresponding region. Table 1 contains the solution in the hodograph space for the function $M=2 c /(\gamma-1)$; here M_{0} is the value of \boldsymbol{M} in the unperturbed gas. Formulas (2.2) in this case become

$$
\xi_{i}=u_{i}+1 / 2(\gamma-1) M M_{i}
$$

The triple wave T_{1} in the space $\xi_{1}, \xi_{2}, \xi_{3}$ is bounded by the planes

$$
\begin{gathered}
1 / 2(\gamma-1)\left(\xi_{1}+\sqrt{3} \xi_{2}+M_{0}\right)-(2 \gamma-1) \xi_{3}=0 \\
\xi_{1}+1 / 2 \sqrt{3} \xi_{2}+V+(\gamma-1)\left(3 / 2 \xi_{1}-1 / 6 \sqrt{3} \xi_{2}-\xi_{3}-M_{0}+1 / 2 V\right)=0 \\
1 / 2(\gamma-1)\left(\xi_{1}+\xi_{2}+M_{0}\right)-\gamma \xi_{1}=0 \\
\frac{\gamma-1}{2}\left(\xi_{1}+\sqrt{3} \xi_{3}+M_{0}\right)-(2 \gamma-1) \xi_{2}+\frac{\gamma-3}{2} V=0 \\
\xi_{1}-\sqrt{3} \xi_{1}=0 \quad \text { (stationary wall) }
\end{gathered}
$$

The riple wave T_{2} is bounded by the planes

$$
\begin{gathered}
1 / 3 \sqrt{3}(\gamma-1) \xi_{2}-1 / 3(\gamma+1) \xi_{3}+1 / 2(\gamma-1)\left(M_{0}-V\right)=0 \\
1 / 3(7 \gamma-1) \xi_{1}+1 / 2 \sqrt{3}(\gamma+1) \xi_{2}-(\gamma-1)\left(\xi_{3}+M_{0}\right)+1 / 2(3 \gamma-1) V=0 \\
1 / 2(7 \gamma-1) \xi_{1}-1 / 3 \sqrt{3}(\gamma+1) \xi_{2}+(\gamma-1)\left(\xi_{3}+M_{0}-V\right)=0 \\
1 / 2 \sqrt{3}(\gamma-1) \xi_{2}-1 / 3(\gamma+1) \xi_{3}+1 / 2(\gamma-1)\left(M_{0}-10 / 3 V\right)=0 \\
\xi_{1}=-V \quad \text { (piston) }
\end{gathered}
$$

All of the side faces of the regions in the lower half of Fig. 2 are orthogonal to the piston $\varepsilon_{s}=-V$.

BIBLIOGRAPHY

1. Sidorov, A.F., On nonstationary potential motions of a polytropic gas with a degenerate hodograph. PMM Vol. 23, No. 5, 1959.
2. Cumberbatch. E. and Varley, E., Generalized self-similar flows. J. Inst. Math. Appl. Vol.2, No.1, 1966.
3. Sidorov, A.F., On shock waves in flows of a polytropic gas having straightline characteristics. PMM Vol. 25, No.2, 1961.
4. Sidorov. A.F., On certain exact solutions of unsteady two-dimensional gas dynamics. PMM Vol. 26, No. 2, 1962.
5. Sidorov, A.F., Two exact solutions of hydrodynamics equations of the tiplewave type. PMM Vol. 28, No. 6, 1964.
6. Ryzhov, O.S., On flows with a degenerate hodograph. PMM Vol. 21, No.3. 1957.
7. Ermolin, E.V. and Sidorov, A.F., Some configurations of isentropic decompositions of two-dimensional discontinuities. PMM Vol. 30, No. 2, 1966.
8. Suchkov, V. A. , Flow into a vacuum along an oblique wall. PMM Vol. 27, No. 4, 1963.
9. Ermolin, E.V., Rubina, L. I. and Sidorov, A.F., On the problem of two pistons. PMM Vol. 32, No.5, 1968.

Translated by A. Y.

MOTION OF A HEAT-CONDUCIING GAS ACTED ON BY A HEAT-INSULATED EXPANDING PISTON

PMM Vol. 33, No. 1, 1969, pp. 175-179
Ia. G. SAPUNKOV
(Saratov)
(Received April 20, 1968)
The temperature and density fields associated with the motion of an ideal gas acted on by an expanding piston have singularities at the piston surface $\left[^{1-3}\right]$. These arise tirough nonallowance for heat conduction by the gas, which plays the determining role near the surface of the piston.
We shall solve the problem of motion of a heat-conducting gas acted on by an expanding heat-insulated piston by the method of interior and exterior expansions. To this end we construct the principal term of the interior asymptotic expansion by splicing it with the solution for an ideal gas which constitutes the principal term of the exterior

